IPMAT Indore 2022 (SA) - Given that f(x)=|x|+2|x-1|+|x-2|+|x-4|+|x-6|+2|x-10|, x (-∞, ∞) the minimum value of f(x) is _________. | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

IPMAT Indore 2022 (SA) PYQs

IPMAT Indore 2022

Algebra
>
Modulus

Medium

Given that f(x)=x+2x1+x2+x4+x6+2x10,x(,) f(x)=|x|+2|x-1|+|x-2|+|x-4|+|x-6|+2|x-10|, x \in(-\infty, \infty) the minimum value of f(x)f(x) is _________.

Entered answer:

Correct Answer: 26

How to find critical point? Equate the stuff within the modulus to 00. \newline xx=0|x| \rightarrow \boxed{x=0} \newline x1x1=0x=1|x-1| \rightarrow x-1=0 \rightarrow \boxed{x =1}
How to find the median of critical points? Note: Repeat the critical point by the number of times the term appears.
In our question, the points are: 0,1,1,2,4,6,10,100, 1, 1, 2, 4, 6, 10, 10. Hence, median =2,4= 2, 4.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question