IPMAT Indore 2022 (MCQ) - For 0/4, let a=(( )^ )( _2 ), b=(( )^ )( _2 ), c=(( )^ )( _2 ) and d=(( )^ )( _2 ). Then, the median value in the sequence a, b, c, d is | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

IPMAT Indore 2022 (MCQ) PYQs

IPMAT Indore 2022

Geometry
>
Trigonometry

Hard

For 0<θ<π40\lt\theta\lt\frac{\pi}{4}, let a=((sinθ)sinθ)(log2cosθ),b=((cosθ)sinθ)(log2sinθ),c=((sinθ)cosθ)(log2cosθ)a=\left((\sin \theta)^{\sin \theta}\right)\left(\log _{2} \cos \theta\right), b=\left((\cos \theta)^{\sin \theta}\right)\left(\log _{2} \sin \theta\right), c=\left((\sin \theta)^{\cos \theta}\right)\left(\log _{2} \cos \theta\right) and d=((sinθ)sinθ)(log2sinθ)d=\left((\sin \theta)^{\sin \theta}\right)\left(\log _{2} \sin \theta\right). Then, the median value in the sequence a,b,c,da, b, c, d is

Correct Option: 2
In the graph given below, the green line shows the sine curve and the blue line shows the cosine curve.
By closely looking at the graph, we can conclude that for 0<θ<π40< \theta < \dfrac{\pi}{4}, the value of cosθ\cos \theta will be higher than the value of sinθ\sin \theta.
To make our calculations slightly easier, let us assume some values for sinθ\sin \theta and cosθ\cos \theta.
Let: sinθ=0.01\sin \theta = 0.01 and cosθ=0.1\cos \theta = 0.1.
ab=(0.01)0.01(0.1)0.01×log20.1log20.01\Rightarrow \dfrac{a}{b} = \dfrac{(0.01)^{0.01}}{(0.1)^{0.01}} \times \dfrac{\log_2 0.1}{\log_2 0.01}
(0.010.1)0.01×log0.010.1\Rightarrow (\dfrac{0.01}{0.1})^{0.01} \times \log_{0.01} 0.1 [logalogb=logba\because \dfrac{\log a}{\log b} = \log_b a]
(110)0.01×(12)log1010\Rightarrow (\dfrac{1}{10})^{0.01} \times (\dfrac{-1}{-2}) \log_{10} 10 [logmbna=ablogmn\because \log_{m^b} n^a = \dfrac{a}{b} \log_m n]
ab=(110)0.01×12(1)\Rightarrow \dfrac{a}{b} = (\dfrac{1}{10})^{0.01} \times \dfrac{1}{2}(1) [logaa=1\because \log_a a = 1] \newline or,
ab=1100.01×12\dfrac{a}{b} = \dfrac{1}{10^{0.01}} \times \dfrac{1}{2}
b>a\therefore b > a

Using the same approach, we'll compare cc and dd.
cd=(0.01)0.1(0.01)0.01×12\Rightarrow \dfrac{c}{d} = \dfrac{(0.01)^{0.1}}{(0.01)^{0.01}} \times \dfrac{1}{2}
cd=(0.01)0.10.01×12\Rightarrow \dfrac{c}{d} = (0.01)^{0.1-0.01} \times \dfrac{1}{2}
cd=(1100)0.09×12\Rightarrow \dfrac{c}{d} = (\dfrac{1}{100})^{0.09} \times \dfrac{1}{2}
d>c\therefore d > c

Similarly, comparing bb and dd, we get b>db > d.
b>a,d>c\because b > a, d > c and b>db > d, it can be said that bb is the greatest among all.
Now comparing aa and cc, we get a>ca > c. Thus, cc is the smallest value among all.

The 'median' of a sequence is the middle-most value, given that the sequence is arranged in an ascending order.
bb (the greatest value) and cc (the smallest value) will occupy the extreme positions when arranged in an increasing order. In other words, they cannot occupy the positions in the middle.
Hence, aa and dd will occupy the middle positions.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question