IPMAT Indore 2024 (MCQ) - Let a = (_7 4)(_7 5 - _7 2)_7 25 (_7 8 - _7 4). Then the value of 5^a is | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

IPMAT Indore 2024 (MCQ) PYQs

IPMAT Indore 2024

Modern Math
>
Logarithms

Medium

Let a=(log74)(log75log72)log725(log78log74)a = \dfrac{(\log_7 4)(\log_7 5 - \log_7 2)}{\log_{7} 25 (\log_7 8 - \log_7 4)}. Then the value of 5a5^a is

Correct Option: 2

You might be wondering how log752log75=log552\dfrac{\log_7 \frac52}{\log_7 5} = {\log_5 \frac52}.
Property used =logam=logbmlogba=\boxed{ {\log_a m} = \dfrac{\log_b m}{\log_b a}}
In logarithm, you need to not just know how LHS -> RHS (in terms of the properties), but also how RHS -> LHS.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question