IPMAT Indore 2019 (MCQ) - The inequality _af(x) < _ag(x) implies that | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

IPMAT Indore 2019 (MCQ) PYQs

IPMAT Indore 2019

Modern Math
>
Logarithms

Medium

The inequality logaf(x)<logag(x)\log_{a}{f(x)} < \log_{a}{g(x)} implies that

Correct Option: 1

logaf(x)<logag(x)\log_a f(x) < \log_a g(x) \newline f(x)>0;g(x)>0\Rightarrow f(x) > 0 ; g(x) > 0
Case - 1 \rightarrow 0<a<10 < a < 1 \newline f(x)>g(x)\Rightarrow f(x) > g(x)
Case - 2 \rightarrow a>1a > 1 \newline f(x)<g(x)\Rightarrow f(x) < g(x)

\newline The rule states that :- \newline In, logaN<b\log_a N < b \newline N>0,a>0,a1N > 0, a > 0, a \neq 1
If 0<a<10 < a < 1 \newline N>ab\therefore N > a^b \\ \newline \Rightarrow Sign changes
If a>1a > 1 \newline N<ab\therefore N < a^b \\ \newline \Rightarrow Sign does not change

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question