JIPMAT 2023 (QA) - The number of integral solutions of the equation 7(y+1/y)-2(y^2+1/y^2)=9 is | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2023 (QA) PYQs

JIPMAT 2023

Number System
>
Integral Solutions

Medium

The number of integral solutions of the equation 7(y+1y)2(y2+1y2)=9 is 7\left(y+\frac{1}{y}\right)-2\left(y^2+\frac{1}{y^2}\right)=9 \text { is }

Correct Option: 2
Let me solve to understand why the answer is 1:
7(y+1y)2(y2+1y2)=97(y + \frac{1}{y}) - 2(y^2 + \frac{1}{y^2}) = 9
Let's let y+1y=ty + \frac{1}{y} = t
Then (y+1y)2=(t)2(y + \frac{1}{y})^2 = (t)^2
y2+1y2=t22y^2 + \frac{1}{y^2} = t^2 - 2
Substituting: \newline 7t2(t22)=97t - 2(t^2 - 2) = 9
7t2t2+4=97t - 2t^2 + 4 = 9
2t27t+5=02t^2 - 7t + 5 = 0
Using quadratic formula: \newline t=7±49404=7±34t = \frac{7 \pm \sqrt{49-40}}{4} = \frac{7 \pm 3}{4}
t=104t = \frac{10}{4} or 44\frac{4}{4}
t=52t = \frac{5}{2} or 11
When t=1t = 1, y+1y=1y+\frac{1}{y}=1 and y2+1y2=1y^{2}+\frac{1}{y^2}=-1
On solving using these values, we get 7×12×(1)=97\times1-2\times(-1) = 9
Therefore, the equation has only 1 integral solution.
The answer is 1.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question