JIPMAT 2023 (QA) - In ABC, B=90^, BC=5 \ cm, AC-AB=1 ~cm, then 1+ (c)1+ (c) is | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2023 (QA) PYQs

JIPMAT 2023

Geometry
>
Trigonometry

Easy

In ABC,B=90,BC=5 cm,ACAB=1 cm\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}, \mathrm{BC}=5 \ \mathrm{cm}, \mathrm{AC}-\mathrm{AB}=1 \mathrm{~cm}, then 1+sin(c)1+cos(c)\frac{1+\sin (\mathrm{c})}{1+\cos (\mathrm{c})} is

Correct Option: 4
Knowing the Pythagorean triplets comes in handy: 5,12,135, 12, 13 (when we know the difference between two sides is 11 cm).
You can also find it using the Pythagorean theorem: \newline AB2+BC2=AC2AB^2 + BC^2 = AC^2
Let's say AB=xAB = x, then AC=x+1AC = x + 1 (since ACAB=1AC - AB = 1)
Using Pythagorean theorem: \newline x2+25=(x+1)2x^2 + 25 = (x + 1)^2 \newline x2+25=x2+2x+1x^2 + 25 = x^2 + 2x + 1 \newline 25=2x+125 = 2x + 1 \newline 24=2x24 = 2x \newline x=12x = 12
Therefore: \newline AB=12AB = 12 cm \newline AC=13AC = 13 cm \newline BC=5BC = 5 cm

Find sin(C)\sin(C) and cos(C)\cos(C):
sin(C)=ABAC=1213\sin(C) = \frac{AB}{AC} = \frac{12}{13}
cos(C)=BCAC=513\cos(C) = \frac{BC}{AC} = \frac{5}{13}
Substituting into the expression:
1+sin(C)1+cos(C)=1+12131+513=13+1213+5=2518\dfrac{1 + \sin(C)}{1 + \cos(C)} = \dfrac{1 + \frac{12}{13}}{1 + \frac{5}{13}}= \dfrac{13 +12}{13 + 5}= \dfrac{25}{18}

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question