JIPMAT 2022 (QA) - Given below are two statement: Statement I: If ()=5/13, then the value of ()=5/12 Statement II: if ()=12/5, then the value of ()=5/12 In the light of the above statements, choose the correct answer form the question below: | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2022 (QA) PYQs

JIPMAT 2022

Geometry
>
Trigonometry

Easy

Given below are two statement:
Statement I: If sin(θ)=513\sin (\theta)=\frac{5}{13}, then the value of tan(θ)=512\tan (\theta)=\frac{5}{12}
Statement II: if cot(θ)=125\cot (\theta)=\frac{12}{5}, then the value of sin(θ)=512\sin (\theta)=\frac{5}{12}
In the light of the above statements, choose the correct answer form the question below:

Correct Option: 3
Statement I: If sin(θ)=513\sin(\theta) = \frac{5}{13}
In right triangle: sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1
(513)2+cos2(θ)=1(\frac{5}{13})^2 + \cos^2(\theta) = 1
cos2(θ)=125169=144169\cos^2(\theta) = 1 - \frac{25}{169} = \frac{144}{169}
cos(θ)=1213\cos(\theta) = \frac{12}{13}
Therefore tan(θ)=sin(θ)cos(θ)=513×1312=512\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{5}{13} × \frac{13}{12} = \frac{5}{12}
Statement II: If cot(θ)=125\cot(\theta) = \frac{12}{5}
cot(θ)=cos(θ)sin(θ)=125\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} = \frac{12}{5}
Therefore sin(θ)=513\sin(\theta) = \frac{5}{13} (using sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1 again)\newlineNot equal to 512\frac{5}{12}
Therefore, Statement I is true and Statement II is false.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question