CUET CUET Mathematics 2024 - Let X denote the number of hours you play during a randomly selected day. The probability that X can take values x has the following form, where c is some constant. P(X=x)=\arraylll 0.1, & if x=0 \\ cx, & if x=1 or x=2 \\ c(5-x), & if x=3 or x=4 \\ 0, & otherwise array. Match List-I with List-II : <table class="question-table" border="1"> <thead> <tr> <th>List-I</th> <th>List-II</th> </tr> </thead> <tbody> <tr> <td>(A) c </td> <td>(I) 0.75</td> </tr> <tr> <td>(B) P(X ≤ 2) </td> <td>(II) 0.3</td> </tr> <tr> <td>(C) P(X = 2) </td> <td>(III) 0.55</td> </tr> <tr> <td>(D) P(X ≥ 2) </td> <td>(IV) 0.15</td> </tr> </tbody> </table> | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

CUET Mathematics 2024 PYQs

CUET Mathematics 2024

Algebra
>
Probability

Easy

Let XX denote the number of hours you play during a randomly selected day. The probability that XX can take values xx has the following form, where cc is some constant.
P(X=x)={0.1, if x=0cx, if x=1 or x=2c(5x), if x=3 or x=40, otherwise \mathrm{P}(\mathrm{X}=\mathrm{x})=\left\{\begin{array}{lll} 0.1, & \text { if } \mathrm{x}=0 \\ \mathrm{cx}, & \text { if } \mathrm{x}=1 \text { or } \mathrm{x}=2 \\ \mathrm{c}(5-\mathrm{x}), & \text { if } \mathrm{x}=3 \text { or } \mathrm{x}=4 \\ 0, & \text { otherwise } \end{array}\right.
Match List-I with List-II :
List-I List-II
(A) c c (I) 0.75
(B) P(X2) P(X \leq 2) (II) 0.3
(C) P(X=2) P(X = 2) (III) 0.55
(D) P(X2) P(X \geq 2) (IV) 0.15

Correct Option: 2
Will be added.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question