CUET CUET Mathematics 2024 - The solution set of the inequality |3 x| ≥|6-3 x| is : | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

CUET Mathematics 2024 PYQs

CUET Mathematics 2024

Algebra
>
Inequalities

Medium

The solution set of the inequality 3x63x|3 x| \geq|6-3 x| is :

Correct Option: 2
Case 1: x2x \geq 2
63x=3x6|6-3x| = 3x-6
The inequality becomes: 3x3x6|3x| \geq 3x-6 \newline Since x2x \geq 2, we have 3x=3x|3x| = 3x \newline So: 3x3x63x \geq 3x-6, which is always true when x2x \geq 2

Case 2: 0x<20 \leq x < 2
3x03x \geq 0 and 63x>06-3x > 0
The inequality becomes: 3x63x3x \geq 6-3x \newline Solving: 6x66x \geq 6, so x1x \geq 1 \newline This gives us: 1x<21 \leq x < 2

Case 3: x<0x < 0
3x<03x < 0 and 63x>06-3x > 0
The inequality becomes: 3x63x-3x \geq 6-3x \newline Simplifying: 060 \geq 6 (false) \newline No solutions here.
Combining all cases, the solution set is: x1x \geq 1

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question