JIPMAT 2021 (QA) - The value of (1sqrt(9)-sqrt(8) - 1sqrt(8)-sqrt(7) + 1sqrt(7)-sqrt(6) - 1sqrt(6)-sqrt(5) + 1sqrt(5)-sqrt(4)) is | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2021 (QA) PYQs

JIPMAT 2021

Algebra
>
Progression & Series

Conceptual

The value of (198187+176165+154)(\frac{1}{\sqrt{9}-\sqrt{8}} - \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} - \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-\sqrt{4}}) is

Correct Option: 4
Let's look at this sum: 198187+176165+154\frac{1}{\sqrt{9}-\sqrt{8}} - \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} - \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-\sqrt{4}}
Let's rationalize each denominator:
198=9+8(98)(9+8)=9+898=3+221=3+22\frac{1}{\sqrt{9}-\sqrt{8}} = \frac{\sqrt{9}+\sqrt{8}}{(\sqrt{9}-\sqrt{8})(\sqrt{9}+\sqrt{8})} = \frac{\sqrt{9}+\sqrt{8}}{9-8} = \frac{3+2\sqrt{2}}{1} = 3+2\sqrt{2}
Similarly,\newline187=(22+7)\frac{1}{\sqrt{8}-\sqrt{7}} = -(2\sqrt{2}+\sqrt{7})
176=7+6\frac{1}{\sqrt{7}-\sqrt{6}} = \sqrt{7}+\sqrt{6}
165=(6+5)\frac{1}{\sqrt{6}-\sqrt{5}} = -(\sqrt{6}+\sqrt{5})
154=5+2\frac{1}{\sqrt{5}-\sqrt{4}} = \sqrt{5}+2
Adding all terms:\newline3+22(22+7)+(7+6)(6+5)+(5+2)3+2\sqrt{2}-(2\sqrt{2}+\sqrt{7})+(\sqrt{7}+\sqrt{6})-(\sqrt{6}+\sqrt{5})+(\sqrt{5}+2)
All terms cancel except 5.
Therefore, the value is 5.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question