JIPMAT 2021 (QA) - If the m^th term of an arithmetic progression is 1/n and the n^th term is 1/m, then the mn^th term of this progression will be | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2021 (QA) PYQs

JIPMAT 2021

Algebra
>
Progression & Series

Conceptual

If the mthm^{\text{th}} term of an arithmetic progression is 1n\frac{1}{n} and the nthn^{\text{th}} term is 1m\frac{1}{m}, then the mnthmn^{\text{th}} term of this progression will be

Correct Option: 4
Given:\newlineam=1na_m = \frac{1}{n} and an=1ma_n = \frac{1}{m}
From arithmetic progression formula:\newlinea+(m1)d=1na + (m-1)d = \frac{1}{n} ...(1)
a+(n1)d=1ma + (n-1)d = \frac{1}{m} ...(2)
Subtracting (2) from (1):\newline(mn)d=1n1m(m-n)d = \frac{1}{n} - \frac{1}{m}
(mn)d=mnmn(m-n)d = \frac{m-n}{mn}
d=1mnd = \frac{1}{mn}
Substituting back in (1):\newlinea+(m1)1mn=1na + (m-1)\frac{1}{mn} = \frac{1}{n}
a=1nm1mna = \frac{1}{n} - \frac{m-1}{mn}
For mnthmn^{th} term:\newlineamn=a+(mn1)da_{mn} = a + (mn-1)d
=[1nm1mn]+(mn1)1mn= [\frac{1}{n} - \frac{m-1}{mn}] + (mn-1)\frac{1}{mn}
=mnmn=1= \frac{mn}{mn} = 1
Therefore, the mnthmn^{th} term is 1.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question