JIPMAT 2021 (QA) - If 2^x = 3^y = 6^-z, then (1/x + 1/y + 1/z) is equal to | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2021 (QA) PYQs

JIPMAT 2021

Algebra
>
Indices

Conceptual

If 2x=3y=6z2^{x} = 3^{y} = 6^{-z}, then (1x+1y+1z)(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}) is equal to

Correct Option: 1
1) Given: 2x=3y=6z2^x = 3^y = 6^{-z}\newline Let's call this common value aa\newline So, 2x=a2^x = a, 3y=a3^y = a, 6z=a6^{-z} = a
2) Taking log2\log_2 of each equality:\newline x=log2(a)x = \log_2(a)\newline ylog2(3)=log2(a)y\log_2(3) = \log_2(a)\newline zlog2(6)=log2(a)-z\log_2(6) = \log_2(a)
3) Therefore:\newline 1x=1log2(a)\frac{1}{x} = \frac{1}{\log_2(a)}
1y=log2(3)log2(a)\frac{1}{y} = \frac{\log_2(3)}{\log_2(a)}
1z=log2(6)log2(a)\frac{1}{z} = -\frac{\log_2(6)}{\log_2(a)}
4) Now 1x+1y+1z\frac{1}{x} + \frac{1}{y} + \frac{1}{z}
=1log2(a)+log2(3)log2(a)+log2(6)log2(a)= \frac{1}{\log_2(a)} + \frac{\log_2(3)}{\log_2(a)} + -\frac{\log_2(6)}{\log_2(a)}
=1+log2(3)log2(6)log2(a)= \frac{1 + \log_2(3) - \log_2(6)}{\log_2(a)}
=1+log2(3)log2(2×3)log2(a)= \frac{1 + \log_2(3) - \log_2(2 × 3)}{\log_2(a)}
=1+log2(3)(log2(2)+log2(3))log2(a)= \frac{1 + \log_2(3) - (\log_2(2) + \log_2(3))}{\log_2(a)}
=1+log2(3)(1+log2(3))log2(a)= \frac{1 + \log_2(3) - (1 + \log_2(3))}{\log_2(a)}
=0= 0
Therefore, 1x+1y+1z=0\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0
The answer is 0.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question