JIPMAT 2022 (QA) - sqrt(5)+sqrt(3)8-2 sqrt(15)+11+2 sqrt(30)sqrt(6)-sqrt(5) | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2022 (QA) PYQs

JIPMAT 2022

Algebra
>
Indices

Hard

5+38215+11+23065\frac{\sqrt{5}+\sqrt{3}}{\sqrt{8-2 \sqrt{15}}}+\frac{\sqrt{11+2 \sqrt{30}}}{\sqrt{6}-\sqrt{5}}

Correct Option: 4
Look at the first term first:
5+38215\frac{\sqrt{5}+\sqrt{3}}{\sqrt{8-2 \sqrt{15}}}
If you look closely, you'll see that:
8215=(5)2+(3)22(5)(3)8-2\sqrt{15}=(\sqrt{5})^2+(\sqrt{3})^2-2(\sqrt5)(\sqrt3)
We know that (ab)2=a2+b22ab(a-b)^2=a^2+b^2-2ab
So we can write the above expression as (53)2(\sqrt5-\sqrt3)^2
So, the first term:
5+353\frac{\sqrt{5}+\sqrt{3}}{\sqrt5-\sqrt3}
Multiply numerator and denominator by (5+3)(\sqrt{5}+\sqrt3)
(5+3)2(53)(5+3)\frac{(\sqrt{5}+\sqrt{3})^2}{(\sqrt5-\sqrt3)(\sqrt5+\sqrt3)}
We know that (a+b)(ab)=a2b2(a+b)(a-b)=a^2-b^2 and that (a+b)2=a2+b2+2ab(a+b)^2=a^2+b^2+2ab
So the above expression can be written as: 5+3+21553=5+3+2152=8+2152=4+15\frac{5+3+2\sqrt15}{5-3}=\frac{5+3+2\sqrt{15}}{2}=\frac{8+2\sqrt{15}}{2}=4+\sqrt{15}
Now for the second term, it's the same approach.
11+230=(6)2+(5)2+2(6)(5)=(6+5)211+2\sqrt{30}=(\sqrt6)^2+(\sqrt5)^2+2(\sqrt6)(\sqrt5)=(\sqrt6+\sqrt5)^2
So, second term:
6+565\frac{\sqrt6+\sqrt5}{\sqrt{6}-\sqrt{5}}
Multiply numerator and denominator by (6+5)(\sqrt6+\sqrt5)
(6+5)2(65)(6+5)\frac{(\sqrt6+\sqrt5)^2}{(\sqrt6-\sqrt5)(\sqrt6+\sqrt5)}
Open the brackets using the same identity
6+5+23065=6+5+2301=11+230\frac{6+5+2\sqrt{30}}{6-5}=\frac{6+5+2\sqrt{30}}{1}=11+2\sqrt{30}
\newlineJust add the two terms now, and we'll get
4+15+11+230=15+15+2304+\sqrt{15}+11+2\sqrt{30}=15+\sqrt{15}+2\sqrt{30}

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question