JIPMAT 2024 (QA) - Choose the correct answer from the options given below : | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2024 (QA) PYQs

JIPMAT 2024

Algebra
>
Indices

Easy

Match List I with List II
List-I (Expression)List-II (Absolute Value)
(A)15×163÷589\sqrt{15 \times 163 \div 5-89}(I)105
(B)152+11×32\sqrt{15^{2}+11 \times 3^{2}}(II)20
(C)82×7×52175\sqrt{8^{2} \times 7 \times 5^{2}-175}(III)10
(D)91+70+121\sqrt{91+\sqrt{70+\sqrt{121}}}(IV)18

Choose the correct answer from the options given below :

Correct Option: 3
Time is of the essence. For these questions, just solve one or two equations and match them with the options, and mark the answer then and there!
Solving the first equation:
15×163÷589\sqrt{15\times163\div5-89}
Use DMAS - Division, then Multiplication, then Addition, then Subtraction
=15×32.689=48989=400=20=\sqrt{15\times32.6-89}=\sqrt{489-89}=\sqrt{400}=20
So we know that A-(II), which is either Option 2 or Option 3.
Onto the second equation:
152+11×32=225+11×9=225+99=324=18\sqrt{15^2+11\times3^2}=\sqrt{225+11\times9}=\sqrt{225+99}=\sqrt{324}=18
Hence, B-(IV), which is Option 3.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question