JIPMAT 2024 (QA) - A circle, square, equilateral triangle and regular pentagon have the same areas. Arrange the following in ascending order based on their perimeters.(A) Circle(B) Square(C) Equilateral triangle(D) Regular pentagon | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2024 (QA) PYQs

JIPMAT 2024

Geometry
>
Quadrilaterals

Hard

A circle, square, equilateral triangle and regular pentagon have the same areas. Arrange the following in ascending order based on their perimeters.
(A) Circle
(B) Square
(C) Equilateral triangle
(D) Regular pentagon

Correct Option: 3
Let me solve this simply.
1) Let's say Area = AA for all shapes.
2) Finding perimeters:\newline* Circle (A): \newline Area = πr2πr^2\newline radius = r=Aπr = \sqrt{\frac{A}{π}}\newline perimeter = 2πr=2πA2πr = 2\sqrt{πA}3.5A3.5\sqrt{A}
* Square (B):\newline Area = s2s^2\newline side = s=As = \sqrt{A}\newline perimeter = 4s=4A4s = 4\sqrt{A}
* Equilateral Triangle (C):\newline Area = 34s2\frac{\sqrt{3}}{4}s^2\newline side = s=2A3s = 2\sqrt{\frac{A}{\sqrt{3}}}\newline perimeter = 3s=6A33s = 6\sqrt{\frac{A}{\sqrt{3}}}4.6A4.6\sqrt{A}
* Regular Pentagon (D):\newline perimeter ≈ 3.8A3.8\sqrt{A} \newline
3) Arranging perimeters from smallest to largest:\newlineCircle (3.5A3.5\sqrt{A}) < Pentagon (3.8A3.8\sqrt{A}) < Square (4A4\sqrt{A}) < Triangle (4.6A4.6\sqrt{A})
Therefore, the order is (A), (D), (B), (C).

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question