JIPMAT 2024 (QA) - Given below are two statements: Statement I: 30^+1 30^-1=2( 30^+1) Statement II : 2 45^ 45^- 45^ 45^=0 | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2024 (QA) PYQs

JIPMAT 2024

Geometry
>
Trigonometry

Hard

Given below are two statements:
Statement I: cot30+1cot301=2(cos30+1)\frac{\cot 30^{\circ}+1}{\cot 30^{\circ}-1}=2\left(\cos 30^{\circ}+1\right)
Statement II : 2sin45cos45tan45cot45=02 \sin 45^{\circ} \cos 45^{\circ}-\tan 45^{\circ} \cot 45^{\circ}=0

Correct Option: 1
Statement I: cot30°+1cot30°1=2(cos30°+1)\frac{\cot 30° + 1}{\cot 30° - 1} = 2(\cos 30° + 1)
1) Left side:\newline - cot30°=31\cot 30° = \frac{\sqrt{3}}{1}\newline - So 3+131\frac{\sqrt{3} + 1}{\sqrt{3} - 1}\newline - Rationalize denominator: (3+1)(3+1)(31)(3+1)\frac{(\sqrt{3} + 1)(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)}
= 3+23+131\frac{3 + 2\sqrt{3} + 1}{3 - 1}
= 4+232\frac{4 + 2\sqrt{3}}{2}
= 2+32 + \sqrt{3}
2) Right side:\newline cos30°=32\cos 30° = \frac{\sqrt{3}}{2}
2(32+1)2(\frac{\sqrt{3}}{2} + 1)
= 3+2\sqrt{3} + 2
= 2+32 + \sqrt{3}
Therefore Statement I is TRUE.
Statement II: 2sin45°cos45°tan45°cot45°=02\sin 45° \cos 45° - \tan 45° \cot 45° = 0
1) sin45°=cos45°=12\sin 45° = \cos 45° = \frac{1}{\sqrt{2}}\newline2) tan45°=cot45°=1\tan 45° = \cot 45° = 1
3) Let's substitute:
2(12)(12)(1)(1)2(\frac{1}{\sqrt{2}})(\frac{1}{\sqrt{2}}) - (1)(1)
= 2(12)12(\frac{1}{2}) - 1
= 111 - 1\newline = 00
Therefore Statement II is TRUE.
Hence, both statements are true.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question