JIPMAT 2024 (QA) - Simplify : [4]0.0625+[3]0.008+sqrt(0.09)-1[3]62 * 5 x [5]32 | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2024 (QA) PYQs

JIPMAT 2024

Algebra
>
Indices

Medium

Simplify : 0.06254+0.0083+0.091625×3253\dfrac{\sqrt[4]{0.0625}+\sqrt[3]{0.008}+\sqrt{0.09}-1}{\sqrt[3]{62 \cdot 5 \times \sqrt[5]{32}}}

Correct Option: 3
1) Let's simplify the numerator first:\newline * 0.06254=1164=12\sqrt[4]{0.0625} = \sqrt[4]{\frac{1}{16}} = \frac{1}{2} (since (12)4=116(\frac{1}{2})^4 = \frac{1}{16})
0.0083=810003=15\sqrt[3]{0.008} = \sqrt[3]{\frac{8}{1000}} = \frac{1}{5} (since (15)3=1125(\frac{1}{5})^3 = \frac{1}{125})
0.09=9100=310\sqrt{0.09} = \sqrt{\frac{9}{100}} = \frac{3}{10}
So numerator = 12+15+3101\frac{1}{2} + \frac{1}{5} + \frac{3}{10} - 1
2) Converting to common denominator in numerator:
510+210+3101010\frac{5}{10} + \frac{2}{10} + \frac{3}{10} - \frac{10}{10}
=101010= \frac{10-10}{10}
=0= 0
3) Therefore, entire expression = 062.53×325\frac{0}{\sqrt[3]{62.5} × \sqrt[5]{32}}\newline =0= 0
The answer is 00.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question