JIPMAT 2024 (QA) - The HCF and LCM of two numbers x and y are respectively 6 and 210 . x+y=72, then 1/x+1/y is equal to : | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2024 (QA) PYQs

JIPMAT 2024

Number System
>
HCF & LCM

Medium

The HCF and LCM of two numbers x\mathrm{x} and y\mathrm{y} are respectively 6 and 210 .
If x+y=72x+y=72, then 1x+1y\frac{1}{x}+\frac{1}{y} is equal to :

Correct Option: 4
1) Given:\newline - HCF(x,yx,y) = 66\newline - LCM(x,yx,y) = 210210\newline - x+y=72x + y = 72
2) We know that for any two numbers:\newline - x×y=HCF×LCMx × y = \text{HCF} × \text{LCM}\newline - Therefore, x×y=6×210=1260x × y = 6 × 210 = 1260
3) Now we have two equations:\newline - x+y=72x + y = 72\newline - x×y=1260x × y = 1260
4) To find 1x+1y\frac{1}{x} + \frac{1}{y}:
- 1x+1y=y+xxy\frac{1}{x} + \frac{1}{y} = \frac{y + x}{xy}
- = 721260\frac{72}{1260}
- = 721260\frac{72}{1260}
- = 36630\frac{36}{630}
- = 235\frac{2}{35}
Therefore, 1x+1y=235\frac{1}{x} + \frac{1}{y} = \frac{2}{35}

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question