JIPMAT 2024 (QA) - If and are the roots of the equation a x^2+b x+c=0, then value of1/a +b+1/a +b is : | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2024 (QA) PYQs

JIPMAT 2024

Algebra
>
Quadratic Equations

Hard

If α\alpha and β\beta are the roots of the equation ax2+bx+c=0a x^{2}+b x+c=0, then value of
1aα+b+1aβ+b\frac{1}{a \alpha+b}+\frac{1}{a \beta+b} is :

Correct Option: 2
1) Since α\alpha and β\beta are roots of ax2+bx+c=0ax^2 + bx + c = 0:\newline aα2+bα+c=0a\alpha^2 + b\alpha + c = 0 ...(1)\newline aβ2+bβ+c=0a\beta^2 + b\beta + c = 0 ...(2)
2) We need to find 1aα+b+1aβ+b\frac{1}{a\alpha+b} + \frac{1}{a\beta+b}
3) From (1), we can write:\newline c=aα2bαc = -a\alpha^2 - b\alpha\newline c=aβ2bβc = -a\beta^2 - b\beta
4) Let's find LCM:
1aα+b+1aβ+b\frac{1}{a\alpha+b} + \frac{1}{a\beta+b}
= (aβ+b)+(aα+b)(aα+b)(aβ+b)\frac{(a\beta+b) + (a\alpha+b)}{(a\alpha+b)(a\beta+b)}
= a(α+β)+2b(aα+b)(aβ+b)\frac{a(\alpha+\beta) + 2b}{(a\alpha+b)(a\beta+b)}
5) For quadratic equation ax2+bx+c=0ax^2 + bx + c = 0:\newline α+β=ba\alpha + \beta = -\frac{b}{a}
6) Substituting:\newline = a(ba)+2b(aα+b)(aβ+b)\frac{a(-\frac{b}{a}) + 2b}{(a\alpha+b)(a\beta+b)}
= b+2b(aα+b)(aβ+b)\frac{-b + 2b}{(a\alpha+b)(a\beta+b)}
= b(aα+b)(aβ+b)\frac{b}{(a\alpha+b)(a\beta+b)}
= ba2αβ+ab(α+β)+b2\frac{b}{a^2\alpha\beta+ab(\alpha+\beta)+b^2}
Put αβ=ca\alpha\beta=\frac{c}{a} and α+β=ba\alpha+\beta=\frac{-b}{a} in the above equation, and we'll get bac\frac{b}{ac}
\newlineTherefore, 1aα+b+1aβ+b=bac\frac{1}{a\alpha+b} + \frac{1}{a\beta+b} = \frac{b}{ac}

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question