JIPMAT 2024 (QA) - An amount doubles itself at compound interest in 5 years. How many years will it take to make the amount 16 times itself ? | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2024 (QA) PYQs

JIPMAT 2024

Arithmetic
>
Simple & Compound Interest

Medium

An amount doubles itself at compound interest in 5 years. How many years will it take to make the amount 16 times itself ?

Correct Option: 4
Let the initial amount be PP and rate of interest be r%r\% \newline
\newline Given that amount doubles in 5 years:
\newline P(1+r100)5=2PP(1 + \frac{r}{100})^5 = 2P
\newline (1+r100)5=2(1 + \frac{r}{100})^5 = 2 \newline \newline
\newline Now, let's say it takes xx years to make the amount 16 times:
\newline P(1+r100)x=16PP(1 + \frac{r}{100})^x = 16P
\newline (1+r100)x=16(1 + \frac{r}{100})^x = 16 \newline \newline
\newline We know that 16=2416 = 2^4
\newline [(1+r100)5]x5=24[(1 + \frac{r}{100})^5]^{\frac{x}{5}} = 2^4
\newline 2x5=242^{\frac{x}{5}} = 2^4 \newline \newline
\newline Therefore: \newline \newline x5=4\frac{x}{5} = 4 \newline \newline x=20x = 20

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question