JIPMAT 2022 (QA) - Given below are two statement based on the following If A and B are independent events such that P(A)=p, P(B)=2 p and P (exactly one of A, B)=5/9 Statement I: p=1/3 Statement II: p=5/12 In the light of the above statements, choose the correct answer form the question given below | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2022 (QA) PYQs

JIPMAT 2022

Modern Math
>
Probability

Medium

Given below are two statement based on the following
If AA and BB are independent events such that P(A)=p,P(B)=2pP(A)=p, P(B)=2 p and PP (exactly one of A,B)=59A, B)=\frac{5}{9}
Statement I: p=13\mathrm{p}=\frac{1}{3}
Statement II: p=512\mathrm{p}=\frac{5}{12}
In the light of the above statements, choose the correct answer form the question given below

Correct Option: 1
For independent events: \newline Given P(A)=pP(A) = p, P(B)=2pP(B) = 2p
P(exactly one)=59P(\text{exactly one}) = \frac{5}{9}
P(exactly one)=P(ABˉAˉB)P(\text{exactly one}) = P(A\bar{B} \cup \bar{A}B)
=P(A)(1P(B))+P(B)(1P(A))= P(A)(1-P(B)) + P(B)(1-P(A))
Therefore: 59=p(12p)+2p(1p)\frac{5}{9} = p(1-2p) + 2p(1-p)
=p2p2+2p2p2= p - 2p^2 + 2p - 2p^2 \newline =3p4p2= 3p - 4p^2 \newline 4p23p+59=0\Rightarrow 4p^2 - 3p + \frac{5}{9} = 0 \newline 36p227p+5=0\Rightarrow 36p^2 - 27p + 5 = 0
For p=13p = \frac{1}{3} (Statement I): \newline 36(19)27(13)+5=0\Rightarrow 36(\frac{1}{9}) - 27(\frac{1}{3}) + 5 = 0
For p=512p = \frac{5}{12} (Statement II): \newline 36(25144)27(512)+5=0\Rightarrow 36(\frac{25}{144}) - 27(\frac{5}{12}) + 5 = 0\newline Therefore, both statements are true.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question