JIPMAT 2022 (QA) - If () and () are the roots of the equation a x^2+b x+c=0, then b^2 is | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2022 (QA) PYQs

JIPMAT 2022

Algebra
>
Quadratic Equations

Hard

If sin(α)\sin (\alpha) and cos(α)\cos (\alpha) are the roots of the equation ax2+bx+c=0a x^{2}+b x+c=0, then b2b^{2} is

Correct Option: 3
If sin(α)\sin(\alpha) and cos(α)\cos(\alpha) are roots:
asin2(α)+bsin(α)+c=0a\sin^2(\alpha) + b\sin(\alpha) + c = 0
acos2(α)+bcos(α)+c=0a\cos^2(\alpha) + b\cos(\alpha) + c = 0 \newline \hspace{3cm} \newline Adding equations: \newline a[sin2(α)+cos2(α)]+b[sin(α)+cos(α)]+2c=0a[\sin^2(\alpha) + \cos^2(\alpha)] + b[\sin(\alpha) + \cos(\alpha)] + 2c = 0
a(1)+b[sin(α)+cos(α)]+2c=0a(1) + b[\sin(\alpha) + \cos(\alpha)] + 2c = 0 ...(1) \newline \hspace{3cm} \newline Product of roots = ca\frac{c}{a}
So, sin(α)cos(α)=ca\sin(\alpha)\cos(\alpha) = \frac{c}{a} ...(2) \newline \hspace{3cm} \newline Sum of roots = ba-\frac{b}{a}
So, sin(α)+cos(α)=ba\sin(\alpha) + \cos(\alpha) = -\frac{b}{a} ...(3) \newline \hspace{3cm} \newline Therefore: \newline [sin(α)+cos(α)]2=[ba]2[\sin(\alpha) + \cos(\alpha)]^2 = [-\frac{b}{a}]^2
But [sin(α)+cos(α)]2=1+2sin(α)cos(α)[\sin(\alpha) + \cos(\alpha)]^2 = 1 + 2\sin(\alpha)\cos(\alpha)
1+2(ca)=b2a21 + 2(\frac{c}{a}) = \frac{b^2}{a^2}
b2=a2+2acb^2 = a^2 + 2ac \newline \hspace{3cm} \newline Therefore, b2=a2+2acb^2 = a^2 + 2ac

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question