JIPMAT 2022 (QA) - Given below are two statements: Statement I: In A B C, A B=6 sqrt(3) ~cm, A C=12 ~cm and B C=6 ~cm, then angle B=90^ Statement II: In A B C, is an isosceles with A C=B C. If A B^2=2 AC^2, Then angle C=90^ In the light of the above statement, choose the correct answer form the question below. | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2022 (QA) PYQs

JIPMAT 2022

Geometry
>
Triangles

Easy

Given below are two statements:
Statement I: In ABC,AB=63 cm,AC=12 cm\triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}, A C=12 \mathrm{~cm} and BC=6 cmB C=6 \mathrm{~cm}, then angle B=90B=90^{\circ}
Statement II: In ABC\triangle A B C, is an isosceles with AC=BCA C=B C. If AB2=2AC2A B^{2}=2 AC^{2}, Then angle C=90C=90^{\circ}
In the light of the above statement, choose the correct answer form the question below.

Correct Option: 1
Statement I: \newline Given: AB=63AB = 6\sqrt{3} cm, AC=12AC = 12 cm, BC=6BC = 6 cm
Using Pythagorean theorem if angle B = 90°: \newline AB2+BC2=AC2AB^2 + BC^2 = AC^2
(63)2+62=122(6\sqrt{3})^2 + 6^2 = 12^2
108+36=144108 + 36 = 144
144=144144 = 144
Therefore Statement I is true.
Statement II: \newline Given isosceles triangle where AC=BCAC = BC \newline And AB2=2AC2AB^2 = 2AC^2
In isosceles triangle, base angles are equal. \newline Let base angles each be xx \newline Then C=180°2xC = 180° - 2x
If AB2=2AC2AB^2 = 2AC^2, this means cosC=0\cos C = 0 \newline Therefore C=90°C = 90°
Therefore Statement II is also true.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question