JIPMAT 2022 (QA) - Match List I with List II. Choose the correct answer from the options given below: | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

JIPMAT 2022 (QA) PYQs

JIPMAT 2022

Algebra
>
Quadratic Equations

Conceptual

List I (Quadratic Equation)List II (Roots)A. 6x2+x12=0I. (6,4)B. 8x2+16x10=202II. (9,36)C. x2+45x+324=0III. (3,12)D. 2x25x3=0IV. (32,43)\begin{array}{|c|c|c|} \hline \textbf{List I (Quadratic Equation)} & \textbf{List II (Roots)} \\ \hline \text{A. } 6x^2 + x - 12 = 0 & \text{I. } (-6, 4) \\ \hline \text{B. } 8x^2 + 16x - 10 = 202 & \text{II. } (9, 36) \\ \hline \text{C. } x^2 + 45x + 324 = 0 & \text{III. } (3, -\frac{1}{2}) \\ \hline \text{D. } 2x^2 - 5x - 3 = 0 & \text{IV. } \left(-\frac{3}{2}, \frac{4}{3}\right) \\ \hline \end{array}

Match List I with List II. Choose the correct answer from the options given below:

Correct Option: 2
Let's take: 6x2+x12=0.6x^2 + x - 12 = 0.
Using the quadratic formula: \newline x=1±1+28812=1±28912=1±1712x = \frac{-1 \pm \sqrt{1+288}}{12} = \frac{-1 \pm \sqrt{289}}{12} = \frac{-1 \pm 17}{12}
Thus the solutions are: \newline x=1612=43x = \frac{16}{12} = \frac{4}{3} and x=1812=32.x = \frac{-18}{12} = -\frac{3}{2}.
These match the pair in the fourth row. \newline (32,43)\left(-\frac{3}{2}, \frac{4}{3}\right)
Hence, A-IV, option B is the correct answer!

Note: The third equation was typed incorrectly by NTA themselves.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question