IPMAT Rohtak 2019 (QA) - If the minimum value of f(x) = x^2 + 2bx + 2c^2 is greater than the maximum value of g(x) = -x^2 - 2cx + b^2, then for real value of x. | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

IPMAT Rohtak 2019 (QA) PYQs

IPMAT Rohtak 2019

Algebra
>
Quadratic Equations

Medium

If the minimum value of f(x)=x2+2bx+2c2f(x) = x^2 + 2bx + 2c^2 is greater than the maximum value of g(x)=x22cx+b2g(x) = -x^2 - 2cx + b^2, then for real value of x.

Correct Option: 1
For quadratic function f(x)=x2+2bx+2c2f(x) = x^2 + 2bx + 2c^2: \newline - Minimum value occurs at x=bx = -b (coefficient of xx divided by -2) \newline - Minimum value = f(b)=b2+(2b2)+2c2=2c2b2f(-b) = b^2 + (-2b^2) + 2c^2 = 2c^2 - b^2
For quadratic function g(x)=x22cx+b2g(x) = -x^2 - 2cx + b^2: \newline - Maximum value occurs at x=cx = -c (coefficient of xx divided by -2) \newline - Maximum value = g(c)=c2+2c2+b2=c2+b2g(-c) = -c^2 + 2c^2 + b^2 = c^2 + b^2
Given that minimum of f(x)f(x) > maximum of g(x)g(x): \newline 2c2b2>c2+b22c^2 - b^2 > c^2 + b^2 \newline 2c2c2>b2+b22c^2 - c^2 > b^2 + b^2 \newline c2>2b2c^2 > 2b^2 \newline c>2b|c| > \sqrt{2}|b|
Therefore, c>2b|c| > \sqrt{2}|b| is the correct condition.

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question