IPMAT Rohtak 2019 (QA) - Given ratios are a : b = 2 : 3, b : c = 5 : 2, c : d = 1 : 4. Find a : b : c. | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

IPMAT Rohtak 2019 (QA) PYQs

IPMAT Rohtak 2019

Arithmetic
>
Ratio, Proportion & Variation

Easy

Given ratios are a:b=2:3,b:c=5:2,c:d=1:4a : b = 2 : 3, b : c = 5 : 2, c : d = 1 : 4. Find a:b:ca : b : c.

Correct Option: 3
From a:b=2:3a:b = 2:3 \newline If a=2ka = 2k, then b=3kb = 3k (where kk is some number)
From b:c=5:2b:c = 5:2 \newline If b=5mb = 5m, then c=2mc = 2m (where mm is some number)
Since b=3kb = 3k and b=5mb = 5m \newline 3k=5m3k = 5m \newline m=3k5m = \frac{3k}{5}
Therefore: \newline a=2ka = 2k \newline b=3kb = 3k \newline c=2m=2×3k5=6k5c = 2m = 2 \times \frac{3k}{5} = \frac{6k}{5}
Let k=5k = 5 to eliminate fractions: \newline a=10a = 10 \newline b=15b = 15 \newline c=6c = 6
Therefore a:b:c=10:15:6a:b:c = 10:15:6

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question