IPMAT Rohtak 2019 (QA) - A circle is inscribed in an equilateral triangle of side 24 cm, touching its sides. What is the area of the remaining portion of the triangle? | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

IPMAT Rohtak 2019 (QA) PYQs

IPMAT Rohtak 2019

Geometry
>
Triangles

Medium

A circle is inscribed in an equilateral triangle of side 24 cm, touching its sides. What is the area of the remaining portion of the triangle?

Correct Option: 1
For an equilateral triangle with inscribed circle:
Side =a=24 cm\text{Side } = a = 24 \text{ cm}
Area of equilateral triangle=34×a2\text{Area of equilateral triangle} = \frac{\sqrt{3}}{4} \times a^2
=34×242= \frac{\sqrt{3}}{4} \times 24^2
=34×576= \frac{\sqrt{3}}{4} \times 576
=1443 cm2= 144\sqrt{3} \text{ cm}^2
Radius of inscribed circle=a12=2412=43 cm\text{Radius of inscribed circle} = \frac{a}{\sqrt{12}} = \frac{24}{\sqrt{12}} = 4\sqrt{3} \text{ cm}
Area of inscribed circle=πr2\text{Area of inscribed circle} = \pi r^2 \newline =π(43)2= \pi(4\sqrt{3})^2 \newline =48π cm2= 48\pi \text{ cm}^2
Remaining area=Area of triangleArea of circle\text{Remaining area} = \text{Area of triangle} - \text{Area of circle} \newline =144348π cm2= 144\sqrt{3} - 48\pi \text{ cm}^2
Therefore, the answer is 144348π cm2144\sqrt{3} - 48\pi \text{ cm}^2

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question