IPMAT Rohtak 2019 (QA) - If 2, (2x - 1), (2x + 3) are in A.P, then x is equal to ____ | PYQs + Solutions | AfterBoards
Skip to main contentSkip to question navigationSkip to solution
IPMAT Indore Free Mocks Topic Tests

IPMAT Rohtak 2019 (QA) PYQs

IPMAT Rohtak 2019

Algebra
>
Progression & Series

Easy

If log2,log(2x1),log(2x+3)\log 2, \log (2x - 1), \log (2x + 3) are in A.P, then xx is equal to ____

Correct Option: 1
When a,b,ca,b,c are in A.P, 2b=a+c2b=a+c
Hence,
2[log(2x1)]=log(2)+log(2x+3)2[log(2x-1)]=log(2)+log(2x+3)
We know that n.log(y)=log(y)nn.log(y)=log(y)^n and log(a)+log(b)=log(ab)log(a)+log(b)=log(ab)
So, log(2x1)2=log(4x+6)log(2x-1)^2=log(4x+6)
So, (2x1)2=4x+6(2x-1)^2=4x+6
4x2+14x=4x+64x^2+1-4x=4x+6 \newline 4x28x5=04x^2-8x-5=0 \newline 4x210x+2x5=04x^2-10x+2x-5=0 \newline 2x(2x5)+1(2x5)=02x(2x-5)+1(2x-5)=0 \newline (2x+1)(2x5)=0(2x+1)(2x-5)=0
x=12x=-\frac{1}{2} or 52\frac{5}{2}
But log values are always positive, hence x=52x=\frac{5}{2}

Keyboard Shortcuts

  • Left arrow: Previous question
  • Right arrow: Next question
  • S key: Jump to solution
  • Q key: Jump to question